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Dúbravská cesta 9, SK-841 04, Bratislava, Slovakia
2 Department of Physics, Graduate School of Science, Kobe University, Kobe 657-8501, Japan

E-mail: andrej.gendiar@savba.sk

Received 4 December 2007, in final form 24 January 2008
Published 10 March 2008
Online at stacks.iop.org/JPhysA/41/125001

Abstract
We study a two-dimensional ferromagnetic Ising model on a series of regular
lattices, which are represented as a tessellation of polygons with p � 5
sides, such as pentagons (p = 5), hexagons (p = 6), etc. Such lattices
are on hyperbolic planes, which have constant negative scalar curvatures. We
calculate critical temperatures and scaling exponents by the use of the corner
transfer matrix renormalization group method. As a result, the mean-field-
like phase transition is observed for all the cases p � 5. Convergence of the
calculated transition temperatures with respect to p is investigated toward the
limit p → ∞, where the system coincides with the Ising model on the Bethe
lattice.

PACS numbers: 05.50.+q, 05.70.Jk, 64.60.F, 75.10.Hk

1. Introduction

The Ising model has been extensively investigated because of its simplicity in definition
and wide applicability to real magnetic materials. The model is exactly solvable in two
dimensions (2D) under appropriate conditions [1, 2]. For the study of insolvable cases, such
as the cross-bond Ising model and three-dimensional (3D) models, a variety of numerical
methods have been developed, such as Monte Carlo simulations [3], Lanczos diagonalization
of row-to-row transfer matrices and Baxter’s method of corner transfer matrices (CTMs) [2].
One of the recent technical progress in numerical study is establishment of the density matrix
renormalization group (DMRG) method [4–6]. The method is applicable to 2D classical
lattice models including the Ising model [7] and is of use for the study of higher-dimensional
lattice models [8–13].

It is widely believed that the phase transition of the Ising model belongs to the so-called
Ising universality class provided that the system is uniform and on planar 2D lattices. This
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universality can be violated if the lattice is in curved spaces, where typical examples are the
lattices represented as regular tessellation of polygons in the hyperbolic plane, which has a
constant negative scalar curvature [14–16]. As was pointed by Chris Wu et al, boundary
effects are non-negligible below the transition temperature on such hyperbolic lattices even in
the thermodynamic limit [17, 18]. d’Auriac et al investigated the bulk and boundary states and
discussed their difference [19]. A recent Monte Carlo (MC) study by Shima and Sakaniwa
for the Ising model on one of the hyperbolic lattices shows that the critical behavior in the
ferromagnetic–paramagnetic transition deep inside the system is mean-field like [20, 21].
Their result is in accordance with the bulk property discussed by d’Auriac et al [19].

The size of the system treated by the MC simulations on the hyperbolic lattices is
limited by an exponential grow of the number of lattice points. Some sort of renormalization
group scheme is required under such a situation. Quite recently we have applied the corner
transfer matrix renormalization group (CTMRG) method [22, 23] to a particular hyperbolic
lattice which consists of pentagons (p = 5) [24]. The CTMRG method enables precise
estimation of the bond energy and the magnetization at the center of a sufficiently large
system. Ferromagnetic boundary conditions are assumed to observe the bulk property. As a
result, we have confirmed the mean-field-like behavior of the phase transition for the studied
case p = 5. In this paper. we extend our previous study by considering hyperbolic lattices
that consist of arbitrary ‘p-gons’ with p > 5, such as hexagons (p = 6), heptagons (p = 7),
etc. For the study of large p cases, we introduce a novel partial sum technique to the CTMRG
method.

We calculate the transition temperature Tc for each case p � 5 as well as related critical
exponents α, β and δ, respectively, associated with the specific heat, the spontaneous and
induced magnetization. We then observe the convergence of Tc toward the limit p → ∞,
where the system corresponds to the Ising model on the Bethe lattice. In the next section,
we explain the detail of the model on the hyperbolic lattices. We observe the structure of
the lattices from the viewpoint of the corner transfer matrix formalism. Numerical results are
presented in section 3, where we calculate the critical temperatures and the critical exponents.
The conclusions are summarized in the last section.

2. Structure of the system on the hyperbolic lattice

Consider a series of infinite-size lattices that consist of regular polygons with p � 5 sides,
which are called as ‘p-gons’. Each lattice is represented as a tessellation of the p-gons on an
infinite plane with a constant negative scalar curvature. One can classify this type of lattices
by a pair of integers (p, q), where the coordination number q represents the number of the
neighboring lattice points. In the following, we consider the (p � 5, q = 4) lattices, including
the pentagonal lattice (5, 4), the hexagonal one (6, 4), the heptagonal one (7, 4), etc. We also
treat a square lattice (4, 4) defined on the flat plane for comparison.

As an example, we draw the pentagonal lattice (5, 4) on the left part of figure 1, where
the infinite area of the hyperbolic plane is mapped into the Poincaré disc. All arcs in the figure
represent geodesics that are perpendicular to the bounding circle. Two geodesics drawn by
the thick arcs cross one another at a lattice point. Note that by these two geodesics, the whole
system is divided into four equivalent semi-infinite parts, which are called as the quadrants or
corners. As another typical example, we draw the (∞, 4) lattice on the right part of figure 1.
This lattice is merely the Bethe lattice with the coordination number p = 4. Note that the
Hausdorff dimension of these (p�5, 4) lattices is infinite.

Consider the Ising model on the (p � 5, 4) lattice, where on each lattice point there is an
Ising spin σi =↑↓. If only the neighboring Ising interactions are assumed, the Hamiltonian
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Figure 1. Left: the Ising model on the pentagonal lattice (5, 4) which is drawn in the Poincaré
disc. The open circles represent the Ising spins σi . Note that each pentagon has the same size
and shape. Right: the Bethe lattice of the coordination number q = 4 is equivalent to the (∞, 4)

lattice.

of the system is represented as

H = −J
∑
{i,j}

σiσj − H
∑
{i}

σi, (1)

where the summation {i, j} runs over all nearest-neighbor spin pairs. We assume that the
interaction is ferromagnetic (J > 0). The external magnetic field H acts on each spin site
uniformly. For latter conveniences of expressing the partition function, let us introduce the
weight w(σiσj ) assigned to the neighboring spin pair {i, j}:

w(σiσj ) = exp
[
βJ

σiσj

2
+ βH

σi + σj

8

]
(2)

with β = 1/kBT . The Boltzmann weight of the whole system is then expressed as

exp(−βH) =
∏
{i,j}

[w(σiσj )]
2. (3)

Since each bond is shared by two p-gons, it is possible to assign a local Boltzmann weight
for each p-gon. Let us focus on the p-gon, where spins on its edges are labeled by σ1, σ2, . . .,
and σp, as shown on the left side of figure 1, where the case p = 5 is drawn as an example.
The Boltzmann weight assigned to the p-gon, which is called as the ‘face weight’, is then
expressed as

W(σ1σ2σ3 · · · σp) = w(σ1σ2)w(σ2σ3) · · · w(σp−1σp)w(σpσ1). (4)

It is straightforward that one can assign the same weight W for all the p-gons in the system.
We have thus represented the Ising model on the (p � 5, 4) lattices as a special case of the
interaction-round-a-face (IRF) model, which regards the ‘face’ as the unit of the system [2].

The partition function of a finite-size system is represented as

Z =
∑
{σ }

∏
W, (5)

where the sum is taken over all configurations of the spins. The product runs over all the face
weights contained in the system starting from a weight, which is shown as W0 on the left in
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Figure 2. A corner transfer matrix C(· · · σ3σ2σ1|σ1′σ2′σ3′ · · ·) of the case p = 5 shown on the left
side consists of a face weight W0, two CTMs of smaller size C1 and three half-row transfer matrices
P1. Each HRTM P(· · · σ3σ2σ1|σ1′σ2′σ3′ · · ·) shown on the right has an analogous substructure.

figure 1, at the center of the system. Around W0 there are 2p number of neighboring weights
W1 in the first shell, 4p(p − 3) number of W2 in the second shell, etc. The number of the
weights and sites in the αth shell increases exponentially with α.

For the calculation of the partition function Z , we introduce the corner transfer matrix
(CTM) denoted by C that represents the Boltzmann weight for each quadrant of the system
[2]. By the use of the CTM, the partition function is expressed as the trace

Z = Tr C4 (6)

of the density matrix ρ = C4. In the following we use the common notations in the CTMRG
method [22–24], see the detail in [24].

Let us consider a finite-size system that contains the lattice points up to the Nth shell,
where the ferromagnetic boundary condition is imposed at the lattice border. The left side
of figure 2 shows the structure of the CTM of the system for the case p = 5. The CTM C
contains a face weight labeled by W0, two CTMs of the smaller size labeled by C1, and three
parts labeled by P1 that corresponds to the so-called half-raw transfer matrix (HRTM). The
right side of figure 2 shows similar substructure of the HRTM for p = 5. Looking at these
figures, one finds a recursive relation between the CTMs and the HRTMs. If one has C and P
of a certain linear size, one can obtain the extended C ′ and P ′ by the following fusion process
[24]:

C ′ = W · P · (C · P)p−3 P ′ = W · P · (C · P)p−4, (7)

which increases the linear size of C and P by one. Note that if the ferromagnetic boundary
condition is imposed for both C and P, the extended C ′ and P ′ are also subject to the same
boundary condition. Repeating this fusion process, one can obtain CTMs and HRTMs of
arbitrary linear sizes provided that these matrices can be stored to a computational machine.
This storage limitation can be removed by the use of the renormalization group (RG)
transformation in the density matrix scheme [4–6]. As a result, the matrices C and P are
renormalized into effective C̃ and P̃ , whose matrix dimension is at most 2m where m is the
number of states kept for each block spin [4].

One-point functions at the center of the system are easily calculated by the use of C̃ thus
obtained by way of sufficient number of iterative extensions and the RG transformations. For
example, the spontaneous magnetization is calculated as

M = 〈σ 〉 = Tr σC̃4

Tr C̃4
, (8)
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Figure 3. Left: the spontaneous magnetization M with respect to temperature T at H = 0. Right:
the t-dependence of the effective critical exponent in equation (10) for the case of (8, 4) lattice.

where σ denotes the Ising spin at the center of the system. For the bond energy, we similarly
express it as

U = −J 〈στ 〉 = −J
Tr στC̃4

Tr C̃4
, (9)

where τ is a neighboring spin to σ . From the calculated U , the specific heat can be obtained
by taking the numerical differential C = ∂U/∂T .

3. Numerical results

Numerical analysis is carried out for the cases p � 5. Because of the product structure of the
local weight W shown in equation (4), the fusion process expressed by equation (7) can be
performed for arbitrary large p without any increase of computational memory. We keep at
most m = 50 states for the block spin variable during the CTMRG calculations. For all the
cases investigated here, the density matrix eigenvalues decay very fast even at the transition
temperature. This is in contrast to the relatively slow decay observed in the square lattice
models [28]. Thus actually m = 10 is sufficient for the calculation of the magnetization M
as well as the bond energy U .

The left side of figure 3 shows the temperature dependence of the spontaneous
magnetization. We have chosen dimensionless parameters kB = J = 1. For comparison,
we also draw M for the case of the Bethe lattice with the coordination number q = 4.
In the critical region below the transition temperature T

(p)
c , the magnetization behaves as

M = f (t)tβ , where f (t) is a slowly varying function of t = (
T

(p)
c − T

)
/T

(p)
c , the rescaled

temperature deviation from T
(p)

c . In order to estimate T
(p)

c precisely, we plot the effective
critical exponent

βeff(t) = ∂

∂ ln t
lnM = β +

∂

∂ ln t
ln f (eln t ) = β +

f ′

f
t + · · · (10)

in a very small t region. The right side of figure 3 shows the effective exponent βeff(t)

thus calculated for the case p = 8. From the trial critical temperatures listed in the inset,
T (8)

c = 2.882 82 gives the best linear fit. We have applied the same procedure for all p that we
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Figure 4. The t-dependence of M2 (left) and M8 (right). The mean-field exponent β = 1
2 is

observed for p � 5, whereas β = 1
8 exclusively for p = 4.

Table 1. The calculated critical temperatures T
(p)

c .

(p, q) (4, 4) (5, 4) (6, 4) (7, 4) (8, 4) (9, 4)

T
(p)

c 2/ ln(
√

2 + 1) 2.799 08 2.860 50 2.877 54 2.882 82 2.884 57
(p, q) (10, 4) (11, 4) (12, 4) (15, 4) (30, 4) (∞, 4)

T
(p)

c 2.885 19 2.885 33 2.885 38 2.885 39 2.885 39 1/ ln
√

2

have chosen. The results are listed in table 1, where βeff(0) = β ∼= 1
2 is confirmed for all the

cases. Figure 4 shows the t-dependence of M2 (left) and M8 (right). It is obvious that the
mean-field exponent β = 1

2 is observed for all the cases p � 5, whereas the Ising universality
class β = 1

8 is realized for the square lattice (4, 4) only.

At the calculated T
(p)

c , let us observe the induced magnetization M with respect to the
applied field H. From the scaling relation M ∝ H 1/δ , another critical exponent δ can be
extracted. The left side of figure 5 shows the linearity of M3 with respect to small external
magnetic fields H calculated at the critical temperature T

(p)
c listed in table 1. It is apparent that

δ is equal to 3, which supports the mean-field-like behavior of the Ising model on the (p, 4)

lattices when p � 5.
To confirm the mean-field nature of the phase transition, we calculate the internal energy

U by way of equation (9). The right side of figure 5 shows U with respect to the rescaled
temperature T/T

(p)
c . For each case there is a cusp at T = T

(p)
c , and a linear dependence of U

in the vicinity of T
(p)

c supports the critical exponent α = 0. There is a jump in specific heat.
Let us observe the convergence of T

(p)
c with respect to p toward T (∞)

c = 1/ ln
√

2 =
2.885 39. As shown on the left side of figure 6, the convergence is exponential

T (p)
c − T (∞)

c ∝ e−ap (11)

with respect to p. Fitting the plotted data for 5 � p � 8, we have obtained the decay factor
a = 1.2543. The prefactor dp in the scaling relations

M = dp

(
T (p)

c − T
)β

(12)
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also shows a monotonic convergence to d∞ as shown on the right side of figure 6. We have not
obtained any appropriate fitting function of the p-dependence yet (the dashed line corresponds
to an exponential fit).

4. Conclusions

We have calculated the magnetization, the internal energy and the specific heat of the Ising
model on a series of (p�5, 4) lattices on the hyperbolic planes. These quantities are observed
at the center of the system with the ferromagnetic boundary condition. We calculated the
critical exponents and obtained α = 0, β = 1

2 and δ = 3 for all the cases. Our result supports
and complements previous predictions given by d’Auriac et al [19], and independently by
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Shima et al [20, 21]. The obtained results are in accordance with the fact that the Hausdorff
dimension is infinite on the hyperbolic lattices and also with common knowledge that the
mean-field-like phase transition is observed above the critical dimension dc = 4 [25].

The transition temperature T
(p)

c of the Ising model on the (p, 4) lattice converges
exponentially fast toward T (∞)

c with respect to increasing p. We have not yet clarified physical
interpretation of this convergence. A renormalization group scheme given by Hilhorst et al
may provide some information to this question [29]. A recent numerical renormalization group
scheme suggested by Levin and Nave might be of use to find out an appropriate fixed-point
Hamiltonian [30].

Recent study of the planar rotator (i.e. the classical XY ) model on a hyperbolic lattice
suggests that the mean-field-like phase transition is not always realized for systems with the
hyperbolic geometry [26]. Such XY model can be investigated by the generalized CTMRG
method explained in this paper [24] if appropriate boundary conditions are chosen [27].
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